Disruption of Fish Reproduction in Hypoxic Coastal Waters: Potential Impacts on Coastal Fisheries Worldwide

Peter Thomas University of Texas at Austin

Hypoxia

- Hypoxia when dissolved oxygen ≤ 2.0mg/l, (~ 30% of normal oxygen levels), too low to support most marine life.
- Anoxia occurs when the bacteria use up the rest of the oxygen, suffocating even themselves.

How coastal hypoxic zones form

1.Stratification of water column

• oxygen in water column used by marine organisms,

- bottom layer cannot be re-oxygenated
 - seasonal increase in oxygen consumption with temp., biomass

How coastal hypoxic zones form

2. Increased nutrient load- eutrophication

- plankton production increases
- dead plankton and waste products fall into bottom layer
- bacteria digest dead organisms, waste consuming remaining O2

Global distribution of hypoxic systems associated with anthropogenic nutrient inputs

hypoxic regions have tripled in past 30yrs- Major Global Change

• over 400 coastal hypoxic regions worldwide, covering 250,000 km²

Assessment of long term effects of increased coastal hypoxia on marine ecosystems and fishery resources

- Necessary for the development of effective management strategies
- Requires knowledge of longterm biological effects of exposure to sublethal hypoxic conditions in marine organisms
- However, information lacking on hypoxia effects on physiological processes that affect fisheries stocks such as reproduction

Control of the Reproduction in Fish

Laboratory studies: Effects of chronic hypoxia on egg production and endocrine function

Question: Does environmental hypoxia exposure disrupt reproduction in Atlantic croaker?

Estuarine Hypoxia: High rainfall in 2003 resulted in extensive and persistent hypoxia throughout East Bay, Florida

Thomas et al., Proceedings of the Royal Society, London B. 2007

Hypoxia in Estuaries: Hypoxia exposure causes reproductive dysfunction in females

egg production and endocrine function impaired at hypoxic sites Similar to endocrine impairment seen in laboratory studies

Hypoxia in Estuaries: Hypoxia exposure also causes reproductive dysfunction in males

1st evidence for reproductive /endocrine impairment in fish exposed to environmental hypoxia

Question:

Does large scale hypoxia cause similar reproductive impairment in fish in the Gulf of Mexico hypoxic zone covering 1000s of square miles

- much greater potential impact on fisheries

Hypoxia in the northern Gulf of Mexico 2nd largest coastal hypoxic zone in the world

"top 10"river flow- stratification

- drains 41% of continental US
- Nitrogen loading tripled since 1950s
 <u>eutrophication</u>

Mapping since mid <u>1980' s:</u> increased from 5,000 km2 - 16,000 km2

Dissolved oxygen \leq 2.0 mg

Hypoxic region on Louisiana continental shelf- 2006-2008

In fall 2007 : 3 control sites and 6 hypoxic sites along two transects 120km apart were sampled

Fall 2007 Croaker gonads undeveloped at hypoxic sites

Fall 2007

Gonadal growth impaired at hypoxic sites in both females and males

Thomas & Rahman, Proceedings of the Royal Society, London B. 2011

2007,2008 Reproductive impairment in males at hypoxic sites

Sperm production

Spermatogenesis and sperm production decreased at hypoxic zone sites

2007 Reproductive impairment in females at hypoxic sites

Very few mature eggs (low fecundity) at hypoxic zone sites

Fall 2007 Endocrine function decreased at hypoxic sites

Reproductive impairment due to endocrine disruption at hypoxic sites

2006, 2007 Evidence for Ovarian Masculinization

Some ovaries from hypoxic zone sites contain spermatogenic cells:

Suggests masculinization under hypoxic conditions

Percent ovaries masculinized

Field Studies

Suggests masculinization caused by hypoxia exposure

How does hypoxia cause the croaker ovary to produce sperm?

HYPOTHESIS: HYPOXIA

Aromatase mRNA levels in females

2007 field studies

Aromatase, decreased expression at hypoxic sites- could be related to masculinization

Sex ratio of Atlantic croaker

Consistent male bias in sex ratio in fish from hypoxic zone

Conclusions: hypoxia field studies in northern Gulf of Mexico

- Egg and sperm production, endocrine function greatly impaired in both male and female croaker at hypoxic sites 120km apart, ~ 3-4000km²
- Evidence for intersex -masculinization of female gonads; male skewed sex ratio
- Results support hypothesis: hypoxia in the northern Gulf of Mexico significantly decreases egg and sperm production in croaker

Funded by NOAA NGOMEX research program

Potential Long-term Effects of Hypoxia-induced Decline in Reproductive Output on Fish Population Size.

Determining long term effects difficult

- **Population affected by multiple factors that vary together and have interactive effects**

-Separation of hypoxia effects from other factors is difficult. e.g fishing by catch

Population Modeling is a valuable approach

Modeling allows for systematic evaluation of multiple factors in a controlled world

Modeling Results 1- Predicted Decline in Louisiana Population Size if 25-50% Croaker Exposed to Hypoxia

Modeling 2- A Second Model also Predicts a Decline in Croaker Population Size—Dr. Kenneth Rose

Average age 2+ abundance for model years 61-100 ranged from 81-83% of baseline abundance (17-19% reduction)

- Less dramatic decline than predicted in other simulation

Does Increased Hypoxia in Coastal Regions Threaten Fishery Stocks over the Long-term ?

-Most extensive study conducted on a coastal fish species, croaker, predicts long-term population decline.

-Hypoxia-induced reproductive impairment has been observed in other aquatic species. But information lacking on reproductive effects on coastal marine species.

- Difficult to detect hypoxia effects on size of fish populations from current stock assessments. Relevant data lacking. Clear evidence for a few fisheries.

Conclusion: Critical to examine commercially important marine fish in other coastal hypoxic regions worldwide for evidence of reproductive impairment in order to predict the long-term population effects